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EXPERIMENTAL ANALYSIS OF WAVE
PROPAGATION IN RAILWAY TRACKS

D. J. T†
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Measurements of the vibrational behaviour of railway track are presented. Because the
track system is effectively infinite, its motion consists of propagating waves, and usual
modal analysis concepts and techniques are not appropriate. New experimental techniques
are therefore developed to handle these phenomena. In particular the various propagating
vibrational waves in the rail are identified in terms of their complex propagation coefficients
and their corresponding deformed shapes. These waves are separated by using an analysis
based on fitting a series of complex exponential functions to the measured data. Some
predictions of wave phenomena in track are also presented for comparison and good
agreement between theory and experiment is found.

7 1997 Academic Press Limited

1. INTRODUCTION

The dynamic behaviour of railway track in the frequency region 100–5000 Hz is of great
importance in relation to the generation of noise by moving trains [1, 2]. The high
frequency dynamics of the track at the excitation point play an important role in the
wheel-rail interaction [3]. As well as this, the track itself is a significant source of the
radiated noise [4–6]. Typically, in the frequency range between about 500 and 1600 Hz,
the vibrations of the rail are the dominant source of noise. At higher frequencies, the
wheel radiation becomes dominant, although the rail radiation remains important.
The sleeper is the dominant source at lower frequencies, the exact frequency range being
determined by the rail fastener stiffness [6].

Various theoretical models for the dynamic behaviour of track have been developed
(see e.g., reference [7]). The level of detail required depends on the frequency range of
interest. In the vertical direction, the track system can be modelled reasonably well at low
frequencies by a beam on a continuous spring-mass-spring support, representing rail-pad,
sleeper and ballast respectively [8]. The Timoshenko beam formulation (including shear
deformation and rotational inertia) is required for frequencies above around 500 Hz. The
discrete nature of the support system only has a significant effect at or around frequencies
where the distance between sleepers corresponds to half a wavelength in the rail, or to
multiple half-wavelengths (called ‘‘pinned-pinned’’ frequencies), the first of which occurs
for the vertical direction between about 800 and 1200 Hz. Models including these effects
can be found in references [8, 9].

Figure 1 illustrates how the simple beam formulation breaks down at higher frequencies.
These results are examples of predictions made by using the finite element method, in
which the modes of vibration of a particular length of rail are calculated with symmetry
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Figure 1. Waves in a free UIC54 rail predicted using a finite element model. In each case the mesh length is
0·54 m and the wavelength is 0·72 m. (a) 2149 Hz; (b) 1170 Hz; (c) 1705 Hz; (d) 2659 Hz.

and/or anti-symmetry boundary conditions at the ends. These modes (which are standing
waves) are directly equivalent to travelling waves in an infinite rail with the same
wavelength, which will occur at the frequency shown (the natural frequency of the finite
length of rail).

Although useful for predicting free wave phenomena, this finite element model cannot
be used to predict frequency responses, however, as the boundary conditions imply an
infinite array of forces. Much more complex finite element models are possible in which
the sleepers are also included and many bays are modelled; see, e.g., reference [10]. In
references [1, 2] an alternative model was developed in which periodic structure theory is
used. In this the rail was seen as a ‘‘periodic’’ structure with (arbitrary) period 10 mm, this
length of rail being modelled by finite elements. The railpad-sleeper-ballast system was also
introduced, although only as an equivalent continuous support. Other models have also
been developed for a rail using for example a finite element method with harmonic
continuation for the longitudinal direction [11, 12] (although the models in references
[11, 12] are of the rail and did not include the support).

In these various models, railway track is seen as effectively infinite in nature and
therefore its motion is not made up of normal modes of vibration but of a series
of travelling waves. Note that models which truncate the track at a particular length
artificially introduce modal behaviour, but if the model is long enough it can approximate
travelling wave phenomena. These waves can occur at all frequencies above their particular
‘‘cut-on’’ frequency, which is effectively a resonance of the two-dimensional cross-section
of the system, the motion of which may be both in-plane and in the direction perpendicular
to the cross-section. Various near-field ‘‘waves’’ also occur, with amplitudes decaying
rapidly away from the excitation point.

Despite the development of various models for wave phenomena in rails, experimental
validation of these wave phenomena is so far limited to laboratory measurements on an
unsupported length of rail (see, e.g., reference [13]). The purpose of the work presented
in this paper is to quantify the wave behaviour by using measured data taken on track.
In order to analyze these wave phenomena, standard modal analysis techniques are
inadequate, since discrete normal modes are assumed rather than propagating waves which
can occur at any frequency. New analysis techniques have therefore been developed, by
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using which it is possible to verify the wave phenomena predicted by the theoretical
models.

2. MEASUREMENTS

2.1.    

Detailed in situ measurements of the vibrational behaviour of three different types of
railway track were carried out in October 1992 (see also references [5, 14]). Measurements
were carried out prior to that on various other tracks, and the results from one of them,
measured in April/May 1991 are also included here. These tracks were all of normal
ballasted construction, with a nominal sleeper spacing of 0·6 m. Their properties are
summarized in Table 1. The pad and ballast stiffnesses are derived from fitting theoretical
curves to measured frequency responses and adjusting these parameters until a reasonable
agreement is achieved (see also reference [7]). The ballast stiffness in particular is complex
with a high loss factor—the values quoted here are the magnitudes, and differ from the
real parts quoted in reference [14].

The selection includes three sleeper types, and three rail types: the UIC54E profile differs
from UIC54 in having a narrower foot (125 mm compared to 140 mm) and head but is
2 mm taller. All rails were not new but the degree of wear was not recorded. The rail-pads
of track C appear to be reasonably soft in the vertical direction while tracks A and E have
rather stiff rail-pads (E is rather soft laterally however). In the case of track B (wooden
sleeper), the fastening system does not include any elastomeric rail-pads although the local
stiffness of the sleeper provides some resilience.

A mesh of nine accelerometers was placed on the rail between two sleepers, of
which five have been used during lateral excitation and six during vertical excitation (see
Figure 2). For each of positions 3 and 5 the analogue signals from two accelerometers
were added electronically (and divided by 2) before recording to remove the rotational part
of the signal. Thus only four signals were recorded for vertical excitation. For practical
reasons an instrumented hammer was used for the excitation, the measurements being
made between the passage of trains on an unloaded track. Valid measurements were
possible up to 5–6 kHz, depending on the hammer tip used. For each measurement the
results from 10 impacts were averaged. The various signals were tape recorded and then

T 1

Summary of properties of the tracks measured

Track
ZXXXXXXXXXXCXXXXXXXXXXV

Parameter A B C E

Rail type UIC54E UIC54E UIC60 UIC54
Rail mass (kg/m) 54 54 60 54
Fastener Nabla K Vossloh DE clips
Pads 4·5 mm none 6 mm 4·5 mm

grooved resilient cork-rubber
Pad stiffness, vertical (N/m) 1·3×109 5×108 3·5×108 9·0×108

Pad stiffness, lateral (N/m) 1·0×108 1·77×108 5·0×107 5·0×107

Sleeper type bibloc wood monobloc bibloc
concrete concrete concrete

Sleeper mass, 1/2 sleeper (kg) 122 30 162 120
Ballast stiffness magnitude vertical (N/m) 1·5×108 1×108 7×107 –
Ballast stiffness magnitude lateral (N/m) 7·5×107 1×108 1·1×108 –
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Figure 2. Measurement positions; (a) force and response positions on a cross-section for vertical and lateral
excitation; (b) measurement sections along the rail.

analyzed in the laboratory by using a multi-channel digital Fourier analyzer. The rail was
excited on the railhead in the vertical and lateral directions at positions spaced 12 cm apart
up to a position 2·4 m from the response cross-section (see Figure 2). This was considerably
easier to carry out than keeping the force position fixed and moving the response
cross-section, but by reciprocity gives virtually equivalent results.

2.2.   

Figures 3 and 4 show examples of the measured vertical and lateral frequency responses
for track E at the midspan position. These are point accelerances—acceleration divided
by force as a function of frequency. A lack of resonant behaviour can be seen which is
characteristic of an infinite waveguide. A distinct peak can be seen at around 1 kHz in the
vertical response and to a lesser extent in the lateral response around 500 and 700 Hz.
These are ‘‘pinned-pinned’’ frequencies.

For comparison, examples are also shown of point accelerances predicted by
using a continuously supported track model from references [1, 2]. This model
includes cross-sectional deformation of the rail. The sharp peak seen 1 kHz in the
measurements (the ‘‘pinned-pinned’’ effect) is not found in the predictions, and the
level is underpredicted between 500 and 1500 Hz. However, a model which includes
the periodic support of the rail [15] gives an extremely good prediction of the vertical
accelerance.

For the lateral direction the agreement between measurement and prediction is
reasononable. In fact there was little difference between measurements above a
sleeper and at mid-span. The remaining difference in level between measurement
and prediction is caused by the different locations of excitation/response point—this
is located at the centre of the head in the measurements and at the top in the
predictions.
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Figure 3. Vertical point accelerances for track E, measured, and predicted by using various theoretical
models. ——, measured between sleepers; – – –, continuously supported rail with cross-section deformation;
–·–·–, discretely supported Timoshenko beam (between sleepers).

Equivalent results for tracks A–C have already been published in references [14, 15]
including comparisons between measurements and predictions.

3. WAVE ANALYSIS

3.1. 

A method will now be derived which allows the response in each of the various
propagating waves in the track to be separated from the frequency response functions
described above (measured for response at the midspan position and for the various
excitation positions).

Initially it was considered that the wavenumbers could be separated from the

Figure 4. Lateral point accelerances for track E, measured, and predicted by using a theoretical model.
——, measured between sleepers; – – –, continuously supported rail with cross-section deformation.
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measured data by using a spatial Fourier transform. However this has the serious
limitation that, for the selected measurement grid with 21 excitation positions spaced
0·12 m apart, the wavenumber resolution is very limited, with only 11 discrete
values (0, 2.62, . . . , 26.2 rad/m, since 2p/2·4=2·62) along with their negative counter-
parts. The use of Fourier transforms also implicitly assumes periodicity beyond the
measurement section, which is not valid for the decaying travelling waves which are
expected.

An alternative method has therefore been developed, which makes explicit use of the
form of the motion. This method has been derived from the time-domain curve-fitting
procedure which is used in modal analysis [16]. At each frequency, the response hj (z) at
position j ( j=1, . . . , J; JE 7) on the cross-section and distance z from the applied force
can be written as an infinite sum of exponential functions:

hj (z)= s
a

n=1

Anj esnz (1)

where sn =−bn−ikn is the complex propagation coefficient (kn is the wavenumber and
bn represents the decay with distance). The decay with distance of wave n (in dB/m)
given by

Dn =−20 log10 =esn ==8·686bn . (2)

Anj is the associated (complex) amplitude at position j on the cross-section. This represents
the deformed shape of the cross-section, and when normalized is equivalent to a
modeshape, except that it exists for, and is different for every frequency.

Equation (1) strictly applies only to a continuously supported rail; for a periodically
supported rail, the amplitude Anj is a periodic function of z with period L, the distance
between supports. Even if strong periodicity occurs in these amplitudes, however, the
method described here will give an average amplitude Anj over the period L, and should
still give reliable estimates for the propagation coefficients sn . The possible effects of
periodicity are discussed later.

The complete set of transfer functions, measured at positions zq =(q−1)Dz (for
q=1, . . . , Q) can be approximated by limiting equation (1) to a finite sum over N
waves:

hqj = hj (zq)1 s
N

n=1

Anj esn(q−1)Dz. (3)

Here hqj are known functions, whilst Anj and sn are unknowns. Equation (3) is solved for
Anj and sn by using a procedure based on the Prony method, as used in reference [16] for
fitting sums of decaying exponential functions to impulse response functions in the time
domain. This procedure, which is described in the Appendix, has been modified for
the current application to derive a least-squares solution to an overdetermined set of
equations. It is important to note here that the Q measurement positions must be equally
spaced to use this method.

For a given response position j, equation (3) represents Q equations with 2N
complex unknowns (Anj and sn ), so this imposes a limit on N of 2NEQ. The maximum
number of waves which can be fitted to the data available from Q=21 positions for
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a single j is therefore 10. However, unlike the spatial Fourier transform approach
referred to earlier, the wavenumbers kn can take any value between 2p/Dz. A Fourier
transform approach would also not have produced the decaying part of the propagation
coefficients, bn .
To improve the statistical reliability, the fit has been based on a reduced number of waves:

N=7 for lateral motion and N=5 for vertical motion, these values being chosen a little
larger than what is expected on the basis of theoretical predictions [1]. Furthermore the
solution derived in the Appendix is found for all J chosen positions on the cross-section,
j, simultaneously, which also increases the statistical degrees of freedom.

Since the analysis is based on a predefined number of waves N at each frequency,
some of the waves extracted by the analysis, particularly those with large bn may be
‘‘fictitious’’ waves, by analogy with fictitious modes in modal analysis [16]. In order
to be able to recognize the significant results, the relative importance of the various
waves (at each frequency) is found by deriving the proportion of vibration ‘‘energy’’ per
wave:

Pn =En> s
N

n'=1

E'n where En = s
J

j=1

s
Q

q=1

=Anj =2 e−2bn(q−1)Dz. (4)

En is proportional to the sum of the ‘‘energy’’ in wave n in each of the 21 measurement
cross-sections. Waves with a high attenuation rate will have a lower value of En as will
those with low amplitudes, Anj . Those waves with larger values of Pn can be considered
to be more reliable than those with a small proportion of the energy.

3.2. 

Of the transfer accelerances obtained between 0 and 2·4 m, five response positions on
the cross-section have been used for lateral excitation (1, 2, 4, 6 and 7) and four positions

Figure 5. Measured imaginary parts of propagation coefficients (wavenumbers) for track B for lateral
excitation; W q40%, +10–40% and · Q10% of vibrational energy.
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Figure 6. Measured imaginary parts of propagation coefficients (wavenumbers) for track A for lateral
excitation. Key as in Figure 5.

have been used for vertical excitation (2, 3, 5 and 7). Due to technical problems, the
data for points 3 and 5 at track E were not correctly measured and therefore had to be
omitted. To simplify the analysis and reduce the number of results, groups of 16 adjacent
frequency lines have been combined, giving an effective bandwidth of 100 Hz for track E
where the original bandwidth was 6·25 Hz, and 128 Hz for tracks A–C where the original
bandwidth was 8 Hz.

3.2.1. Lateral excitation
The wavenumbers (imaginary parts of the complex propagation coefficients) for lateral

Figure 7. Measured imaginary parts of propagation coefficients (wavenumbers) for track C for lateral
excitation. Key as in Figure 5.
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Figure 8. Measured imaginary parts of propagation coefficients (wavenumbers) for track E for lateral
excitation. Key as in Figure 5.

excitation are presented in Figures 5–8. The 12 cm spacing chosen limits the wavenumber
range to 226·2 rad/m, beyond which the data are subject to aliasing. The points are
marked by using different symbols according to the proportion of vibration ‘‘energy’’ in
a given wave, equation (4). Note that the analysis for each (100 or 128 Hz) frequency band
is independent, so it is not possible to relate directly waves at one frequency with those
at the next. This can mostly be done by eye, however, and comparison with theoretical
results also aids interpretation.

Of the waves which are most clearly defined (consistently above 10% of the energy),

Figure 9. Wavenumbers for lateral waves predicted by finite element calculations of free rail; ——, UIC54
(track E); – – –, UIC54E (tracks A and B); ····, UIC60 (track C).
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Figure 10. Measured decaying part of propagation coefficient (bn ) for track E for lateral excitation. ——,
Wave 1; – – – – –, wave 2; ····, wave 3; — – — –, wave 4.

one wave can be seen to propagate from low frequencies, cutting on at around 200 Hz.
A second wave cuts on around 400 Hz, although it is not seen so consistently—it is clearest
for track E. For all tracks this second wave has a much lower amplitude above about
800 Hz and is not seen at all between 1·5 and 4 kHz (3 kHz for track C). A third
wave begins at 1·7 kHz for the 54 kg/m rails and 1·4 kHz for UIC 60 rail. Higher order
waves found in the predictions [2] are not found consistently in the measured data. In the
region 5–6 kHz some aliasing is observed, in which waves with a wavenumber greater
than p/Dz=26·2 rad/m appear as large negative wavenumbers. To obtain more reliable
measurements above 5 kHz, a spacing closer than 12 cm should have been used.

Predicted results from finite element model of Figure 1 are given in Figure 9 for all three
types of rail. The mesh length (0·54 m) limits the wavenumbers which can be calculated
to multiples of p/1·08=2·9 rad/m. The lack of rail-pads, sleepers, etc., in this model means
that the first two waves (lateral bending and torsion) cut-on at 0 Hz in the predictions,

Figure 11. Minimum measured decaying part of propagation coefficient (bn ) for each track for lateral
excitation. – – –, Track A; ——, track B; ····, track C; — – – —, track E.
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and the third wave also cuts on at a slightly lower frequency than in the measurements.
Nevertheless, the trends are the same as those found in Figures 5–8.

The real parts of the propagation coefficients are shown in Figure 10 for track E, in
which the results for the various wave types have been connected up manually from an
analysis of the wavenumbers shown of Figure 8. The first wave (the one with the highest
wavenumber at a given frequency) has the lowest attenuation up to 4 kHz. Between 1
and 1·5 kHz the attenuation is negative which is not physically possible. It should be noted
that a decay of less than about 0·5 dB/m is too low to measure accurately over 2·4 m—
a longer measurement grid would be necessary. This corresponds to a value of bn of about
0·06.

For only the waves with significant ‘‘energy’’ at each frequency, the minimum value
of the decaying part of the wave propagation coefficient (bn ) has been determined for
each track. This is shown in Figure 11. In all cases this corresponds to the lateral
wave with the highest wavenumber kn in the region 400–4000 Hz (3000 Hz for track C).
The negative values for track E are omitted from this logarithmic presentation. For
tracks A–C the attenuations are not negative, but some isolated low values occur which
are below the limit of reasonable accuracy. At high frequencies the tracks all have similar
decay rates, but at low frequencies tracks E and C, which have the lowest lateral
pad stiffness (see Table 1), have lower attenuation of the lateral waves than tracks A
and B.

The cross-sectional deformations of the various lateral waves can be derived from the
relative amplitude and phase of Anj at the five measurement positions. These are shown
in Figure 12 for track E for selected frequencies. The first wave is seen to consist of lateral
bending at low frequencies but changes to a foot-rocking motion at high frequencies. The
second wave begins as a torsional wave, and the third as a bending of the web. Figure 13

Figure 12. Normalized cross-section deformation associated with each lateral wave, at selected frequencies,
f in Hz, from experimental analysis for track E. Wavenumbers, k, in rad/m are also listed.
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Figure 14. Measured imaginary parts of propagation coefficients (wavenumbers) for track B for vertical
excitation. Key as in Figure 5.

gives equivalent results from a finite element calculation (equivalent to Figure 1), which
are remarkably similar to those observed. From these predicted results it can be seen that
the second wave has relatively small amplitudes on the rail head between about 1·5 and
4 kHz, which explains why it was not identified in the experiments in this frequency
range (excitation was always on the middle of the head in the experiments). A fourth lateral
wave is predicted above about 5 kHz but is not found in the measurements; this also has
a node near the excitation point.

Figure 15. Measured imaginary parts of propagation coefficients (wavenumbers) for track A for vertical
excitation. Key as in Figure 5.
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Figure 16. Measured imaginary parts of propagation coefficients (wavenumbers) for track C for vertical
excitation. Key as in Figure 5.

3.2.2. Vertical excitation
Figures 14–17 show the wavenumber results for the vertical waves. Here a single wave

dominates up to 4 kHz. Equivalent predicted results from the finite element model are
given in Figure 18 for comparison. These include longitudinal waves, which have not been
measured in the experimental arrangement described, as neither excitation nor response
in the longitudinal direction have been included.

A higher order vertical wave cuts on around 5 kHz, and in fact is strongly coupled with

Figure 17. Measured imaginary parts of propagation coefficients (wavenumbers) for track E for vertical
excitation. Key as in Figure 5.
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Figure 18. Wavenumbers for vertical and longitudinal waves predicted by finite element calculations of free
rail; ——, UIC54 (track E); – – –, UIC54E (tracks A and B); ···, UIC60 (track C).

the longitudinal wave around 6 rad/m. This cannot be discerned in these results due to the
limited wavenumber resolution of the finite element model, but it is clearly seen in the
results in reference [2]. Consequently the two curves should not actually cross, but the wave
cutting on at arount 5 kHz will follow the line of the longitudinal wave, while the
longitudinal wave will follow the line of the former wave.

The predicted curves for the vertical bending wave show the same feature as the
measured curve, namely that the UIC60 rail has the highest wavenumber at a given
frequency, and the UIC54E rail the lowest. However, the measured wavenumbers are
generally a little lower than those predicted for each rail.

The decaying part of the propagation coefficient of the dominant vertical wave, shown
in Figure 19, is generally higher than for the dominant lateral waves, especially below

Figure 19. Minimum measured decaying part of propagation coefficient (bn ) for each track for vertical
excitation: – – –, Track A; –––, track B; ····, track C; –·–·–, track E.
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Figure 21. Logarithmic ratio of maximum to minimum amplitude within sleeper span measured for each track
for vertical bending wave; – – –, Track A; –––, track B; ····, track C, –·–·–, track E.

1 kHz. Above 2 kHz, on the other hand, the vertical waves generally have a lower decay
rate than the lateral waves. Track C has the lowest attenuation for the vertical direction.
This is a consequence of the fact that it has the softest rail fasteners in this direction—see
Table 1—as the damping in the track, at frequencies above the uncoupling frequency
of the rail from the sleeper, is determined by the rail-pad stiffness and loss factor.
Both of the bibloc sleepered tracks (A and E) contain a strong broad peak in the
attenuation at around 500–700 Hz, corresponding to the sleeper and pad acting as a
mass-spring dynamic absorber. After a dip around the pinned-pinned frequency (1 kHz),
track A especially contains another peak around 1500 kHz. These features have also
been found in predictions with a periodically supported beam model (see Figure 7 of
reference [15]).

Figure 20 shows the cross-section deformations corresponding to the vertical and
longitudinal waves predicted by the finite element calculation. An increasing amount of
foot motion can be seen in each wave as frequency increases.

3.3. 

On further inspection, the measured vertical wavenumbers shown in Figures 14–17 can
be seen to contain an interesting phenomenon. As well as the predominant vertical wave
(k1), a series of ‘‘shadow’’ waves are found, the dispersion curves of which run roughly
parallel to that of k1. These have the wavenumbers

kn 1 k1 + (2p/Dz)(n−1)/5, (5)

for n an integer. The fact that these are spaced at one fifth of the total range of
wavenumbers is indicative of a relation to the periodicity of the track support (since
there are five excitation positions within each sleeper span). If the amplitude Anj is
not constant over a sleeper span, but periodic, these modulations of the amplitude will
manifest themselves as additional wavenumber components as found in Figures 14–17.
Nevertheless, the predominant wavenumber is almost always the one expected from the
equivalent continuous track model.
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Another phenomenon which might be expected to occur, is that a positive wavenumber
k1 may occur simultaneously with its negative counterpart −k1 (due to reflections at the
sleepers causing standing waves to occur). Whilst this does not occur to any large extent,
it is nevertheless the case that the modulation effects noted above are often strongest when
−k1 is also one of the kn’s as given in equation (5), for example at 1 kHz (the first
pinned-pinned frequency) where k1 = p/0·6=5·24.

Such phenomena are not observed to the same degree in the lateral results (Figure 5–8),
which is consistent with a much lesser effect of periodicity in this direction (a consequence
of the lower support stiffnesses for this direction).

In order to quantify the modulation of the amplitude within a sleeper span in the vertical
bending wave, a modified version of the analysis method has been applied in which, instead
of J=4 positions on Q=21 cross-sections, the Q=4 sleeper spans are used (i.e., with
Dz=0·6) with J=4×5 positions within them. In this analysis, therefore, each position
within the sleeper span is treated as independent. On the other hand, at most N=2 waves
can be extracted. One of these turned out always to correspond to the dominant vertical
bending of wave of Figures 14–17. The corresponding deformed shape Anj contains 4×5
positions.

Results are given here only in the form of the ratio between the smallest and largest
amplitudes within a sleeper span. For each frequency, the mean is first determined of
=Anj = over the four positions on each cross-section. The cross-section with the maximum
such response is selected, as well as that with the minimum response. The ratio between
these responses gives a measure of the modulation of the response within a sleeper span.
This factor is shown in Figure 21 in decibels (20 log10 (Amin /Amax )). Two tracks (B and C)
have rather low modulation whilst on the other two (A and E) it is somewhat higher.
It is particularly high for track E (up to 30 dB) around the pinned-pinned frequencies,
i.e., approximately 1 kHz and 2·9 kHz, and for track A around 1·8 kHz, the reason for
which is less clear.

4. CONCLUSIONS

A new experimental analysis method has been developed for analyzing propagating
waves in effectively infinite structures. Very little prior knowledge is required of the form
of these waves, although the choice of mesh size can be optimized by knowledge of the
likely range of wavenumbers.

Application of this method to railway track allows one vertical and three lateral
propagating waves to be clearly identified, and their wavenumbers determined as a
function of frequency up to 5 kHz. The deformed shapes and decay rates of each wave
along the rail could also be measured. The cut-on frequencies of the vertical bending,
lateral bending and torsional waves are in the range 200–500 Hz, depending on the fastener
stiffness. The third lateral wave, which consists of bending of the web, cuts on at around
1·7 kHz for UIC 54 rail and 1·4 kHz for UIC 60 rail independently of fastener stiffness.
The deformed shapes of each wave are frequency-dependent, making classification
difficult; the measured shapes agree well with predictions, however. Higher order waves
which are predicted to cut on at around 5 kHz in both lateral and vertical directions were
not identified clearly in the measurements, probably due to the choice of excitation
position.

The chosen mesh was only just sufficient for analysis of waves in the track up to 5 kHz,
with some aliasing occurring above this frequency, indicating that a closer spacing would
be desirable here. A longer mesh is required where the attenuation is lower than about
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0·5 dB/m, which occurs for some of the lateral results. The number of measurement
cross-sections determines the maximum number of waves which can be resolved, and this
was more than enough. Additional excitation positions, for example on the web or foot,
could be used to ensure that all waves are identified, but the results found are the most
relevant for excitation due to wheel/rail contact.
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APPENDIX: LEAST-SQUARES SOLUTION FOR PROPAGATION COEFFICIENTS
AND AMPLITUDES

The measurements yield a set of transfer accelerances, hqj , measured for force positions
zq =(q−1)Dz (for q=1, . . . , Q) relative to the response positions ( j is the index
over multiple response positions on a single cross-section). These accelerances can be
approximated by a finite sum over N waves,

hqj = hj (zq )1 s
N

n=1

Anj esn(q−1)Dz, (A1)

where sn =−bn −ikn is the complex propagation coefficient (kn is the wavenumber) and
Anj is the associated amplitude. Upon writing

vn =esnDx (A2)

it follows that

hqj 1 s
N

n=1

Anjv(q−1)
n . (A3)

Multiplying each equation by an unknown factor Bq and summing over q gives

s
Q

q=1

Bqhaj 1 s
N

n=1

Anj s
Q

q=1

Bqv(q−1)
n . (A4)

A set of Bq is sought for which

s
Q

q=1

Bqhqj =0 (A5)

for all j. The set Bq is selected such that Bq =0 for qeN+2 and BN+1 =1. This
gives

s
N

q=1

bqhqj =−h(N+1)j (A6)

for all j. Since in general An $ 0, it follows from equation (A4) that

s
N+1

q=1

Bqv(q−1)
n =0 (A7)

for each n. Similarly, for re 0,

s
N+1

q=1

Bqh(q+ r)j = s
N

n=1

Anj0 s
N+1

q=1

Bqv(q−1)
n 1vr

n . (A8)

The bracketed term is equal to zero from equation (A7), and hence

s
N

q=1

Bqh(q+ r)j =−h(N+1)j 0E rEQ−N−1. (A9)
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Equation (A9) can be rewritten in matrix form as

K L F Jh11 · · · hN1 h(N+1)1

G G G G···
··· B1

···F J
G G G GG GG G G Gh(Q−N)1 · · · h(Q−1)1

··· = −
hQ1 , (A10)g hG G G Gh12 · · · hN2

··· h(N+1)2G GG G G G···
··· BN

···f jG G G G
h(Q−N)J · · · h(Q−1)J hQJk l f j

or

[H]{B}=−{h	 }, (A11)

which represents J(Q−N) equations in N unknowns (Bq ). For J(Q−N)qN an exact
solution is not possible, but a least-squares solution can be found by employing the
pseudo-inverse of [H]:

{B}=−[H]+{h	 }, (A12)

where

[H]+ = ([H]H[H])−1[H]H (A13)

in which H denotes the complex conjugate transpose. After having found the constants Bq ,
equation (A7) is solved to give N roots vn , from which the corresponding complex
propagation coefficients (sn =−bn −ikn ) can be derived,

vn =esnDz =e−bnDz e−iknDz. (A14)

i.e.,

kn =−(1/Dz) arg (vn ), bn =(1/Dz) loge (=vn =). (A15)

Finally the amplitudes Anj at the various measurement positions, j, in each wave, n, can
be extracted from equation (A3), which can be rewritten in matrix form as

1 · · · 1 A11 · · · A1J h11 · · · h1JK LK L K L
G G G GG Gv1 · · · vN

···
··· =

···
··· , (A16)G G G GG G···

···
···

···
···

···G GG G G G
v(Q−1)

1 · · · v(Q−1)
N AN1 · · · ANJ hQ1 · · · hQJk lk l k l

equation (A7) is solved to give N roots vn , from which the corresponding complex
propagation coefficients (sn =−bn −ikn ) can be derived,

vn =esnDz =e−bnDz e−iknDz. (A14)

i.e.,

kn =−(1/Dz) arg (vn ), bn =(1/Dz) loge (=vn =). (A15)
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Finally the amplitudes Anj at the various measurement positions, j, in each wave, n, can
be extracted from equation (A3), which can be rewritten in matrix form as

1 · · · 1 A11 · · · A1J h11 · · · h1JK L K LK L
G G G GG Gv1 · · · vN

···
··· =

···
··· , (A16)G G G GG G···

···
···

···
···

···G GG G G G
v(Q−1)

1 · · · v(Q−1)
N AN1 · · · ANJ hQ1 · · · hQJk lk l k l

or

[V][A]= [h]. (A17)

For each j, this represents Q equations in N unknowns (Anj ). Since QqN, an exact
solution is not possible, but once more a least-squares solution can be found, this time
by employing the pseudo-inverse of [V]:

[A]= [V]+[h]. (A18)


